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1. Introduction

There has been renewed interest in the properties of Fundamental and Dirichlet strings

within String Theory. This has been partly inspired by the recent suggestion that these

objects could be cosmic string candidates [1], however they have also found prominence due

to the gauge theory/ gravity correspondence where the Fundamental strings are expected

to terminate on quarks, and are known by the more generic name of k-strings [2].

It has been argued on general grounds that the F and D-strings of type IIB string

theory should be placed on equal footing. In fact this is simply a consequence of SL(2, Z)

invariance which implies that both objects are S-dual to each other. As a result it is more

natural to consider bound states of such objects, which go by the more colloquial name of

(p, q)-strings, where we consider pF -strings coupled to qD-strings. The tension of such an

object in 10D flat space has been calculated to be [3]

T(p,q) = TF

√

q2

g2
s

+ p2, (1.1)

which is a manifestly SL(2, Z) invariant expression. Recent work has aimed to extend

this result to non-trivial backgrounds, which have some relevance to gauge theory and

cosmology [4, 5]. One background in particular, the Klebanov-Strassler throat [6], has

come under close scrutiny. The general idea is that this background is dual to an N = 1

supersymmetric SU(N +M)×SU(N) confining gauge theory, where there are ND3-branes

and MD5-branes wrapped on the conifold. In the specific case where N is a multiple of

M , the gauge theory cascades down to SU(M) in the deep IR and the D5-branes dissolve

into M units of RR three-form flux resulting in the blow up of the S3 within the T 1,1. This

is more commonly referred to as the warped deformed conifold [7]. Fundamental strings

in this background are dual to a confining string between a quark/anti-quark pair, whilst

the D-string is dual to an axionic string [8].
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From a cosmological perspective we should also be interested in the formation of these

(p, q) bound states within this geometry, as it can be compactified down to four dimensions

using closed string fluxes. Typically there will be D3/D̄3-branes present in the compacti-

fication [9] whose relative motion is a candidate mechanism for inflation [10]. Once these

branes annihilate one another we generally expect the decay products to be F and D-

strings, which will energetically prefer to be located at the tip of the warped deformed

conifold and appear as cosmic superstrings in the low energy theory. The range of tensions

for these strings is within the current observational limits and so studying their properties

could prove important as a direct verification of string theory.

Previous papers were concerned with calculating the tension spectrum for either the F

or the D-strings in this background [11], however recently this was extended to the (p, q)-

string bound state [12]. The idea is to develop a more unified approach that relies on the

Abelian DBI action for a D3-brane, with non-zero electric and magnetic flux on the world-

volume. The resulting tension spectrum was in excellent agreement with the individually

calculated tensions. However this prescription is really only strictly valid when the world-

volume fluxes are large in order to minimise non-commutative effects. The result is that

we can only trust the solution for large, integer, values of p and q. Interestingly the results

of [12] show that the F -strings are charged in ZM , whilst the D-strings are charged in Z.

Upon compactification we should expect that this latter condition reduces to ZK due to

the breaking of the global axionic U(1) symmetry, where K is a measure of the bulk flux

over the dual cycle of the manifold.

A different strategy, first attempted by Witten [13], is to consider a non-Abelian de-

scription of the problem, where the F -strings appear as electric flux on the world-volumes

of coincident D1-branes. This also accounts for the fact that the D-strings are charged

only under Z. In terms of an effective low energy theory we can use the Myers action for

coincident D-branes [14, 15]. However we should note that this action does not agree with

string calculations at higher orders, but to leading order provides a very good description.

An additional problem is that the action is typically only calculable in the limit of a large

number of coincident branes. However, a recent proposal has shown how to compute the

action for a finite number of branes [16]. This is phenomenologically more interesting both

from the gauge theory side and the cosmology side. In the cosmology case, in particu-

lar, we do not expect to see a large number of cosmic strings in the universe 1 as they

provide a negligible contribution to the Cosmic Microwave Background (see [17] for more

comprehensive details). However they are expected to exist as by-products of symmetry

breaking. Consequently we must ensure our string theory mechanisms for inflation do not

over-produce these objects. This is where we require a description of the string tension for

a finite number of these strings.

As a first step toward this goal we will initially concentrate on the non-compact case of

the warped deformed conifold. Using the Myers action in curved space [14, 18] we should

aim to reproduce the tension spectrum for the (p, q)-string initially in the large q limit in

order to compare with [12], but we can also find the most general expression for the tension

1In fact we have yet to identify any cosmic strings.
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when q is small using the techniques developed in [16]. In the next section we will review

the background solution for the conifold and briefly recapitulate the results obtained in [12]

in the Abelian formulation. In section 3 we will introduce the Myers action and show how

we recover the Abelian result in the limit of large flux before proceeding to the case of

finite q. Finally we will close with some comments and suggestions for further work.

2. (p, q) strings in the warped deformed conifold

In this section we will review the warped deformed conifold solution [7] and the construction

of the Abelian theory which yields the warped (p, q)-string tension [12]. The conifold

solution has a Ricci-flat Kahler metric which implies that the base must be a Sasaki-

Einstein manifold. The simplest such space preserving N = 1 supersymmetry is T 1,1

which is topologically equivalent to an S2 fibration over the three-sphere. We can easily

see this from the conifold metric which is given by

ds6
2 = dr2 +

r2

9

(

dψ +
2

∑

i=1

cos θidφi

)2

+
r2

6

2
∑

i=1

(

dθ2
i + sin2 θidφ2

i

)

, (2.1)

which clearly implies that T 1,1 = (SU(2) × SU(2))/U(1) ∼ S3 × S2. However we are

interested in the warped deformed conifold which arises once we turn on fluxes through

the manifold. The quantisation condition for the R-R and NS-NS fluxes through the three

cycles is given by
1

4π2α′

∫

A
F3 = M,

1

4π2α′

∫

B
H3 = −K, (2.2)

where M,K ∈ Z and A,B are dual cycles which are chosen to have an intersection number

of one. Typically the cone is defined by the following expression in C4, namely
∑4

i=1 ω2
i = 0,

however we can remove the singular point by deforming the solution as follows

4
∑

i=1

ω2
i = ε2, ε ∈ C. (2.3)

A convenient representation for the deformed conifold metric is given by introducing a

basis of one-forms [6] and can be written as

ds6
2 =

ε4/3K(τ)

2

[

dτ2 + g2
5

3K3(τ)
+ cosh2(

τ

2
)[g2

3 + g2
4 ] + sinh2(

τ

2
)[g2

1 + g2
2 ]

]

, (2.4)

where the overall warp factor is given by

K(τ) =
(sinh(2τ) − 2τ)1/3

21/3 sinh(τ)
. (2.5)

Note that τ parameterises the size of the S2 fibration, and as τ → 0 the two-sphere shrinks

to zero size and we are left with the metric for the three-sphere. Introduction of background

closed string fluxes allows us to write the full ’warped’ ten-dimensional metric as follows

ds10
2 = a2

0ηµνdxµdxν + gsMb0α
′

(

1

2
dr2 + r2dΩ2

2 + dΩ2
3

)

. (2.6)
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Note that this is a simplified version of the full Warped Deformed conifold metric when we

consider the τ → 0 limit. Clearly in this picture r represents the radius of the shrinking

S2 and is parameterised by θ, φ. In addition, the warp factors a0 and b0 are constants

depending on the wrapped fluxes. In what follows we will be interested in the case where

τ is approximately zero and the specific choice of θ = θ1 = θ2 and φ = φ1 = −φ2. Thus

the two parameter space (θ, φ) parameterises the shrinking S2 and for the case where

ψ = π this choice of coordinates describes a two-sphere inside the three-sphere. We refer

the interested reader to [12] for more details on this point. The metric at the tip reduces

to the following expression which is the one relevant for all the calculations in this section

ds2 ∼ a2
0ηµνdxµdxν + gsMb0α

′
(

dψ2 + sin2(ψ)dΩ2
2

)

(2.7)

where the radius of the S3 is now parameterised by ψ. In this particular background the

NS two form is zero, however the RR is non-zero and in this angular coordinate system

takes the following form

C2 = Mα′

(

ψ − sin(2ψ)

2

)

sin(θ)dθdφ. (2.8)

We also note that the RR scalar C0, which acts as the source for D-instantons, is actually

zero in this background. However it makes sense to treat it as being perturbatively small

in the following analysis. In order to simulate (p, q) strings in the four-dimensional space

one must introduce a D3-brane into the conifold which has non-zero magnetic and electric

fluxes on its world-volume. For simplicity both these fields are assumed parallel, and we

choose a gauge such that only F23 and F01 are non-zero. The brane is extended in two of the

non-compact directions and wrapped on the shrinking S2 inside the S3, where the B field

vanishes. After collecting all the terms and integrating over the compact directions, one

can obtain the Hamiltonian density for the (p, q) bound state via legendre transform [12]

H =
a2

0

λ

√

q2

g2
s

+
b2
0M

2

π2
sin4(ψ) +

[

M

π

(

ψ − sin(2ψ)

2

)

− (p − qC0)

]2

. (2.9)

At this stage we must minimise the energy with respect to the radius of the S2. The result

is

ψmin +
b2
0 − 1

2
sin(2ψmin) =

(p − qC0)π

M
. (2.10)

However, the b2
0 − 1 factor is almost zero and so to leading order we can drop this term.

Then we see that ψmin ∼ (p−qC0)π
M which yields a value rmin for the S2 radius at the

minimum

rmin =
√

b0gsMα′

∣

∣

∣

∣

sin

(

π(p − qC0)

M

)∣

∣

∣

∣

(2.11)

If we now insert the expression for ψmin into our expression for the Hamiltonian we

obtain the tension of the (p, q) bound state

Hmin =
a2

0

λ

√

q2

g2
s

+

(

b0M

π

)2

sin2

(

π(p − qC0)

M

)

, (2.12)
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which is in excellent agreement with the results obtained in [11], when one takes the limits

p → 0 or q → 0 yielding the tension spectrum for the D and F -strings respectively. If we

take the large flux limit then we can expand the final term in the square root to the next

to leading order in powers of 1/M . This yields the following expression

Hmin ∼ a2
0

λ

√

q2

g2
s

+ b2
0(p − qC0)2

(

1 − π2(p − qC0)2

3M2
+

2π4(p − qC0)4

45M4
− · · ·

)

, (2.13)

where we recall that b0 ∼ 1. Thus we see that in the large M limit one recovers the expected

result for the (p, q) string tension in a non-trivial background. It is worth mentioning that if

we take the limit q → 0, leaving us with only the fundamental string contribution, that the

corrections to the tension scale as 1/M2. This was first noted by Douglas and Shenker [8]

and is different to the 1/M correction that arises due to Casimir scaling [2]. Note that in

this limit the minimal radius, rmin, can be approximated by the following

rmin ∼
√

b0gsα′
π(p − qC0)√

M

∣

∣

∣

∣

{

1 − π2(p − qC0)
2

6M2
+ O(

1

M4
)

}
∣

∣

∣

∣

, (2.14)

where the terms inside the brackets are a power series in even powers of 1/M .

3. Non-abelian (p, q) strings

In this section we shall examine the problem of computing the (p, q) string tension, from

the D-string perspective. This means we must construct a theory of q coincident D-

strings which have p units of quantised electric flux on their world-volumes. In a sense this

corresponds to the microscopic description of the model presented in the previous section.

In order to do this we must use the Myers action [14] for q coincident D-strings. The

bosonic part can be written as follows

S = −T1

∫

d2ξSTr

(

e−φ
√

−det(P[Eab + Eai(Q−1 − δ)ijEjb] + λFab)
√

detQi
j

)

(3.1)

where we are again pulling back the space-time tensors to the D-string world-volumes,

this time using covariant derivatives. The first term in the action can be interpreted as a

dynamical piece, whilst the final term acts as a potential for the transverse fields. Note

also that Eab = Gab + Bab is the linear combination of the metric and Kalb-Ramond field,

and Qi
j = δi

j + iλ[φi, φk]Ekj where φi are the transverse coordinates to the D-string and

have canonical mass dimension. The symmetrised trace implies that we must take the

trace over all symmetrised pairings of the transverse scalars, however in the limit when q,

the number of D-strings, is large, this reduces to the more familiar trace operation. For

the finite q theory there has been recent progress in developing a consistent prescription

for taking the symmetrised trace [16], although this only works for certain gauge groups.

There also exists the non-Abelian version of the Chern-Simons action, which couples the

background RR fields to the coincident D-strings. The action can be written as follows

S = µp

∫

STr
(

P
[

eiλiφiφ
∑

gsC(n)e
B

]

eλF
)

, (3.2)

– 5 –
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where supersymmetry dictates that µ1 = T1. Note that we are working in the conventions

of [14] in which the normalization of the RR C(n) differs from the canonical one, which

accounts for the factor of gs in (3.2). The action contains the interior derivative that maps

p-forms to p − 2 forms, which for the RR 2-form C(2) gives

iφiφC(2) =
Cij

2
[φj , φi]. (3.3)

In the above it should be remembered that the field Cij is a function of all the background

coordinates and in particular its dependence on the non-commuting coordinates φi is ob-

tained through the non-Abelian Taylor series [14]. We must also turn on electric flux on the

world-volumes of the D-strings, which can be interpreted as dissolving F -strings onto the

branes. For simplicity we will also fix the gauge A0 = 0, which implies that F01 6= 0 = ε.

Effectively this means that the gauge field is proportional to the identity matrix in this

picture, breaking the U(q) symmetry group of the coincident branes down to SU(q)×U(1),

where the gauge field now commutes with the SU(q) sector.

If we are very close to the tip of the warped deformed conifold then B(2) vanishes and

the dilaton is constant, which simplifies the non-Abelian action. Furthermore we orient

the D-strings along two of the Minkowski directions of the non-compact spacetime in or-

der to make contact with the Abelian theory of the wrapped D3-brane. Recall that the

D3-brane wraps an S2 inside the S3. Since this S2 is thus magnetized, it suggests that on

the non-Abelian side we should attempt to describe this wrapped S2 via a fuzzy sphere

ansatz for our transverse scalars, as we know that in the large q limit we should recover

the classical two-sphere geometry with q units of magnetic flux. This is not the same as

constructing the dual model to that in [12], as in order to do so we would have to consider

a BIon type solution [21] which blows up into a D3-brane wrapped on the two-cycle via

the dielectric effect [14, 20]. The non-trivial construction of such a solution is beyond the

scope of this note, but would be useful to develop in the future.

Our goal is thus to try and describe, in the non-Abelian theory, a fuzzy 2-sphere

embedded not in flat space but in a round S3 geometry, where we capture the essential

physics of the solution presented in [12] but do not construct the dual microscopic model.

Let us begin by only taking the transverse coordinates φi to be non-vanishing in the

direction of this S3 whose coordinates we label as ya, a = 1, 2, 3. The metric on this S3

can now be obtained after performing a non-Abelian Taylor expansion [14, 19]

ds2
3 = gabdyadyb, gab(φ) ∼ gab(y) + · · · . (3.4)

Since we are not looking for dynamical solutions we can regard the scalar fields as static

which simplifies the dynamical portion of the action. If we calculate the determinant in the

potential piece then to leading order we find (using the property that gab(y) is diagonal)

detQi
j = 1 − λ2

2
[φa, φb][φc, φd]gac(y)gbd(y) + .. (3.5)

– 6 –
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and so the DBI contribution to the effective action can be written as

S = −T1

∫

d2σSTr

(

a2
0

√

1 − λ2ε21

a4
0

√

1 − λ2

2
[φa, φb][φc, φd]gacgbd

)

(3.6)

Let us now consider the fuzzy sphere ansatz for the transverse scalars by imposing the

following condition

φa = R̂ea
i α

i, (3.7)

where the αi are the generators of the SU(2) algebra, which is isomorphic to SO(3) and

satisfies the commutation relation [αi, αj ] = 2iεijkαk, and ea
i are vielbeins on the round

three-sphere and R̂ is proportional to the radius of the fuzzy sphere. Using this notation

the indices i, j label coordinates in the tangent space to this S3. As in [14] we will take

these generators to be in the q dimensional irreducible representation in order for them to

yield the lowest energy configuration. If we now impose this ansatz on our fields in the

action we find

S = −T1

∫

d2σSTr

(

a2
0

√

1 − λ2ε2

a4
0

√

1 + 4λ2R̂4Ĉ

)

, (3.8)

where Ĉ is the usual quadratic Casimir of the representation given by ĈIq = αiαjδij , where

Iq is the rank q identity matrix. It follows from our choice of ansatz in (3.7) there is no

explicit dependence of the metric gab(y) in the above action. With the inclusion of the S3

veilbeins in the fuzzy sphere ansatz (3.7), the SU(2) matrices αi arrange themselves into

the Casimir invariant αiαiδij in the action (3.8). This feature simplifies the calculation

of the symmetrised trace both at large q and also for finite q (see next section). It is

plausible that there exists a more general choice of ansatz for the transverse scalars than

our proposed solution (3.7), but the resulting STr computation may be rather difficult.

Another motivation for (3.7) is that it is easy to see that the equations of motion (assuming

constant matrices φa ) are satisfied for the S3 background since the resulting algebraic

equations are formally equivalent to those obtained in a flat background [14], using the

ansatz φi = R̂αi.

In the large q limit the symmetrised trace can be approximated by a trace over the

gauge group. We can expand the square roots, take the trace and then re-sum the resultant

solution to get a closed form expression for the action. Later, when we restrict ourselves

to the case of finite q this will change, as we must take the symmetrisation over the scalars

into account.

From the expansion of the Chern-Simons action we can see that the leading order

non-zero contributions are

Scs = T1

∫

STr
(

P[C0 + eiλiφiφC2]λF
)

+ · · · (3.9)

where C2 has only non zero components in the spherical directions. After expanding the

action to include the interior derivatives, and performing the pullback operation we find

the action reduces to

Scs = T1

∫

d2σSTr

(

λεC0 − iλ2ε
Cab

2
[φa, φb]

)

. (3.10)

– 7 –
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In order to make any further progress we must Taylor expand the RR two-form which yields

a term which will vanish, and also a term λ∂cCabφ
c. However under the STr operation

this term is proportional to the field strength Fabc which gives rise to quantised flux when

integrated over S3. We write Fabc = fΩabc where Ωabc is the volume element of S3, and

using the flux normalisation condition 1
4πα′

∫

A F3 = M we find

f =
2

(b0gs)3/2
√

Mα′
. (3.11)

Combining this with the relation ΩabcΩ
abc = 6 implies that the large q limit of the Chern-

Simons action reduces to

Scs = T1

∫

d2σ

(

gsλqC0ε +
4

3

qgsĈλ3εR̂3

(b0gs)3/2
√

Mα′

)

. (3.12)

We can now construct the canonical momentum density of the electric field by varying

the Lagrangian density. As there is no explicit dependence of the action upon the gauge

potential, we expect the resulting quantity to be conserved and also quantised in units of

the string tension. The resultant displacement field is given by the usual expression

p =
∂L

∂ε
, (3.13)

and we find it takes the following algebraic form

p = T1qa
2
0

√

1 + 4λ2ĈR̂4
λ2ε

a4
0

(

1 − λ2ε2

a4
0

)−1/2

+ T1qgsλC0 +
4qgsT1λ

3R̂3Ĉ

3(b0gs)3/2
√

Mα′
. (3.14)

Note that we are using the canonical radius R̂ in this expression, which is related to

the physical radius, r, of the fuzzy sphere through the expression r2 = R̂2λ2Ĉ. If we

make this substitution and construct the canonical Hamiltonian density via the Legendre

transformation we find (using the relation T1λ = 1/gs)

H =
a2

0

λ

√

√

√

√

q2

g2
s

(

1 +
4r4

λ2Ĉ

)

+

(

p − qC0 −
4qr3

√
2π

3(b0gs)3/2
√

ĈMλ3

)2

. (3.15)

The overall factor multiplying the square root is simply the warped tension of a fundamental

string. At this juncture we should minimise the energy in (3.15) to compare with that

predicted in the Abelian theory of the last section. We first concentrate on the large M

approximation, which implies that there is a large flux on the three-sphere. Naively one

might assume that the energy is minimised when r = 0, however we can easily see that this

corresponds to a saddle point. In fact a quick calculation shows that in this approximation,

the energy is minimised at the following radius

rmin =
(p − qC0)

2b
3/2
0

√

2πgsλ

M
. (3.16)

– 8 –
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This should be compared to the Abelian result (2.11) of the last section. We see that

approximating b0 = 1, to leading order in 1/M both expressions for rmin are in precise

agreement. Whilst this result is encouraging, what we are really interested in is comparison

of the tension of the (p, q) strings in the two formulations. Substituting (3.16) back into

(3.15) we find that keeping terms to O(1/M2) the energy density at the minimum becomes

Hmin ∼ a2
0

λ

√

√

√

√

q2

g2
s

(

1 +
(p − qC0)4π2g2

s

b6
0M

2Ĉ

)

+ (p − qC0)2
{

1 − 4(p − qC0)2π2

3b6
0M

2

}

. (3.17)

If we now again work in the approximation where b0 = 1 we can see that the predicted (p, q)

string tension agrees exactly with that predicted in the abelian theory (2.13) up to and

including terms of O(1/M2). This result is further strong evidence that the non-Abelian

DBI description of (p, q) strings through the fuzzy sphere ansatz is capturing the correct

physics. This is particularly so of the O(1/M2) terms in the tension formula above as these

are sensitive to the r4 and r3 terms in the non-Abelian DBI and to our choice of fuzzy

sphere ansatz.

One may wonder if the predicted tension of the (p, q) strings in the non-Abelian for-

mulation agrees (to O(1/M2) ) even if the parameter b0 6= 1 2. To check this one needs

the corresponding expression for the tension in the Abelian formulation, expanded as a

power series in 1/M . This is obtained by first solving the minimization equation (2.10)

after expanding the sin(2ψmin) term to cubic order. This gives

ψmin =
(p − qC0)π

b2
0M

+
2

3

(p − qC0)
3π3(b2

0 − 1)

b8M3
+ O(1/M5). (3.18)

Substituting this value of ψmin into (2.9) and expanding in powers of 1/M one finds

precise agreement with the terms arising from a similar expansion of (3.17).

A further calculation of the O(1/M4) in the tension formula shows a discrepancy with

the Abelian result. The latter predicts corrections 2
45M4 π4(p − qC0)

6 whereas the non-

Abelian theory gives a factor 4
9M4 π4(p− qC0)

6. An investigation of the algebraic structure

of sub-leading corrections in (3.15) shows that they take the form (π2k(p−qC0)2k+2

M2k ) for

k = 1, 2, 3.. (taking b0 = 1). This is exactly the structure one finds on the abelian side by

expanding out the sin2 term in (2.12).

One may also consider comparing the tension obtained above in the case where the

quantised flux M is not necessarily large. In this case, rmin can be obtained by solving

the depressed cubic (i.e. one in which the quadratic term is absent) coming from energy

minimization. Two of the solutions are imaginary, however the physical solution can be

written as follows

rmin =

(

−α0

2
+

√

α3
1

27
+

α2
0

4

)1/3

−
(

α0

2
+

√

α3
1

27
+

α2
0

4

)1/3

(3.19)

where for large q, α0 = −3
4(p − qC0)λ(gsMα′)1/3 and α1 = 3

2Mα′gs. It should be noted

that to avoid large back reaction corrections to the metric of the S3, M should be taken

2we thank L.Leblond and S.H.Henry-Tye for discussions on this point
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to be large in order for us to trust the effective action. Then the perturbative analysis of

the string tension in powers of 1/M is a good approximation.

3.1 Tension for finite q

The results from the previous subsection were only valid in the large q limit, where we could

ignore the additional corrections coming from the symmetrised trace procedure. If we want

to study finite q, then this must be taken into account. Fortunately a prescription for doing

this has been recently proposed [16]. Let us write the general form for the Hamiltonian

density H, where we continue to use the fuzzy S2 ansatz but work in terms of the canonical

radius R̂

H =
a2

0

λ

√

√

√

√

1

g2
s

(

STr

∞
∑

k=0

(−1)k

k!

[

−1

2

]

k

(4λ2ĈR̂4)k

)2

+

(

p − qC0

gs
− 4qĈλ2R̂3

3(b0gs)3/2
√

Mα′

)2

where we have used the following definition
[

−1

2

]

k

=
Γ(k − 1/2)

Γ(−1/2)
. (3.20)

Now the symmetrised trace acts on the Casimir of the representation in two different ways,

depending on whether the spin representation is odd or even. There is a simple relationship

between the spin and the number of branes, namely n = 2j = q − 1, which will play a role

in what follows. The symmetrised trace acts on the Casimir in the following manner

STr[Ĉm] = 2(2m + 1)

n/2
∑

i=1

(2i)2m n = even (3.21)

= 2(2m + 1)

(n+1)/2
∑

i=1

(2i − 1)2m n = odd.

This prescription implies the following definition for the physical radius of the fuzzy sphere

r2 = λ2R̂2Limm→∞

(

STrĈm+1

STrĈm

)

= λ2R̂2n2, (3.22)

where the quadratic Casimir is now ĈIq = (q2 − 1)Iq = n(n + 2)In+1 in terms of the spin

representation.

We can now consistently take the limit of small q using this prescription. To illustrate

this we consider the first non-trivial solution where there are two coincident D-strings.

Expansion of the symmetrised trace leads to the following expression for H

H =
a2

0

λ

√

√

√

√

4

g2
s

(

1 +
8r4

λ2

)2 (

1 +
4r4

λ2

)−1

+

(

p − 2C0 −
8r3

(b0gsλ)3/2

√

2π

M

)2

(3.23)

where there is a potential sign ambiguity in the r3 term due to the definition of the physical

radius. However we have chosen the minus sign in order for the solution to agree with that
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of the large q limit. Once again we can search for a minimal radius constraint by considering

the large flux limit, which is a useful simplification. However as there are now only two

branes, the backreaction upon the background is more under control.

Writing the full constraint equation for the minimisation of H for the case q = 2,

without demanding that 1/M terms are negligible, we find

32r

g2
sλ

2
F (r) =

8(p − 2C0)

(bgsλ)

√

2π

M
G(r)

(

1 − 8r3

(p − 2C0)(bgsλ)3/2

√

2π

M

)

(3.24)

where we have introduced the following simplifications

F (r) = 1 +
32

3

2
∑

k=1

k

(

r4

λ2

)k

, G(r) = 1 + 8
2

∑

k=1

k

(

r4

λ2

)k

. (3.25)

Clearly eq (3.24) is difficult to solve analytically. To simplify the task, we drop all terms

of order 1/M as in any case they should be insignificant in the large flux solutions we are

considering in this note. There are now two limiting cases of interest for us. The first is

when the physical radius namely r4 << λ2, which allows us to find the solution

r =
r′

2
(3.26)

where r′ is a shorthand notation for the corresponding minimal radius in the large q case

(3.16) (where we would set q=2). This clearly shows that the minimum energy configu-

ration occurs at a smaller radius. However we should be careful about interpreting this

result, as the Myers action may not actually be valid in such a limit. Moreover it would

also seem to suggest that the S2 embedded within the S3 of the conifold geometry has

shrunk to zero - which would imply a further non-trivial topology change. The second

limit of interest is when the summation is dominated by the r8 terms. Again it is easy to

see that the minimal radius occurs at

r =
3r′

8
(3.27)

which is again smaller than the radius in the large q limit. In fact evaluating the minimum

of H for various values of q shows that this radius is always smaller than the corresponding

radius in the large q limit, which is what we would naively expect. Figure 1 illustrates

this in a plot of the tension H against physical radius r for the three values q = 2, 4, 10.

Here, we chose for convenience p = 100, gs = 0.1, C0 = 0.1,M = 100, a0 = 1 and work with

units where α′ = 1. Typically C0 will be small in this solution [12], however the results are

applicable even when we consider an odd number of branes. This shift in radius arises due

to the symmetrisation prescription for pairs of fields in the Myers action. Furthermore we

see that the tension at the minimum is smaller for finite q, which is phenomenologically

interesting from a cosmological perspective as we can imagine a situation where very few

F and D strings are formed at the end of brane/anti-brane annihilation. The strings will

tend to move together to minimise their energy at the tip of the conifold, and for cases

where there are only a couple of D-strings, their respective tensions could easily satisfy the

observational bounds [17].
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Figure 1: string tension H vs r for q = 2, 4, 10.

4. Conclusions

In this note we have investigated the (p, q)-string tension at the tip of the warped deformed

conifold from the perspective of the non-Abelian DBI action. In the limit of large p and q

we recover the same results as [12] up to and including O(1/M2) in the large flux expansion.

Beyond this order we suspect that higher order corrections to the DBI action will become

relevant, which is why we don’t find matching coefficients in the expansion beyond this

order. Note that taking M to be large is necessary in this model in order to neglect back

reaction of the fluxes upon the geometry. If we restrict ourselves to the Fundamental string

sector then we obtain the following expansion

H ∼ T̃F p

(

1 − p2π2

6M2
+ · · ·

)

, (4.1)

where we have set b0 = 1 and written T̃F to denote the warped string tension. This is

exactly the same expansion arising from the Douglas-Shenker solution [8] which supports

the conclusion that Casimir scaling (which yields interaction terms proportional to 1/M)

is not responsible for these corrections [2]. Calculating the higher order terms in the non-

Abelian DBI may well provide further agreement with the expected sinusoidal solution,

although this is beyond the scope of the current endeavor. Moreover our current expansion

of the action does not show the expected baryon formation at p = M where the tension

vanishes. Again this may change once higher order effects are taken into consideration.

In addition, we have obtained the general form of the energy density for the case

of finite q and shown that the minimisation radius, and consequently the string tension,

increases as we increase q. It is more difficult to find an analytic expression for the string

tension in this instance, however we saw that we could make reasonable approximations.

The most notable feature of the finite q result is the form of the 1/M expansion. In the

limit where r4 >> λ2, b0 = 1 the tension of the bound state for q = 2 cannot be larger

– 12 –



J
H
E
P
1
2
(
2
0
0
6
)
0
5
7

than

H ∼ T̃F

√

(p − 2C0)2 −
27(p − 2C0)4π2

256M2
+ · · · (4.2)

where there are higher order interaction terms going as 1/M4. If we expand the square root

we obtain the same functional form for the tension as we did in the large q solution - namely

corrections proportional to p3/M2 in the large M limit. This expansion clearly does not

come from Casimir scaling. We cannot say whether it comes from something akin to the

Douglas-Shenker solution without explicit calculation of the higher order terms. However

the result is very suggestive, and shows that the fundamental strings are aware of the finite

q effects, which accounts for the numerical discrepancy with the previous equation (4.1).

We can also use this prescription to address the question of Wilson lines in SU(M)

gauge theory. A recent paper showed how it was possible to calculate the supergravity

dual to the Wilson loop in the symmetric representation using the action for D3-branes

with electric flux [22]. It was further conjectured that the single brane gives rise to a single

trace operator in the gauge theory. It would be interesting to see if we could use the finite

q prescription for the non-Abelian DBI to calculate multi-trace operators in this SU(M)

gauge theory, especially if we don’t have to take M → ∞ in order to obtain a solution

(see [23] for related issues).

The Myers action also explains why the D-strings are valued in Z, at least to leading

order. It would certainly be interesting to investigate the compactified theory, where we

expect the Z to be broken to ZK , as it is not immediately clear why the number of D-

strings would be restricted. This is also important from a cosmological perspective, as

we have seen that the q = 2 solution has a significantly lower tension than the large q

results obtained previously. Therefore it seems preferable for cosmic (p, q) superstrings to

be produced in low numbers. We hope to return to this problem in the future, bearing in

mind that there is also a new constraint on the background fluxes with regard to string

formation after brane/anti-brane annihilation [19], which implies that M ≥ 12. Clearly in

this case the 1/M2 correction terms could play a more significant role.

A related issue is the dynamics of the bound state in such a geometry. Our solution

was purely static and confined to a specific point in the bulk where the only non-zero fields

were the two RR-form fields. A more general problem would be to study the motion of

this bound state in the presence of the non-zero B and four-form RR fields. This would

indeed be useful from the perspective of cosmic strings, and might also have an interesting

dual interpretation in the gauge theory.

Acknowledgments

It is a pleasure to thank James Bedford and Costis Papageorgakis for their continuing

encouragement and comments and Louis Leblond and Henry Tye for useful discussions.

J.W. is supported by a QMUL studentship. This work is in part supported by the EC

Marie Curie research Training Network MRTN-CT-2004-512194.

– 13 –



J
H
E
P
1
2
(
2
0
0
6
)
0
5
7

References

[1] E.J. Copeland and P.M. Saffin, On the evolution of cosmic-superstring networks, JHEP 11

(2005) 023 [hep-th/0505110];

E.J. Copeland, R.C. Myers and J. Polchinski, Cosmic F- and D-strings, JHEP 06 (2004) 013

[hep-th/0312067];

I. Cho, Y. Kim and B. Kyae, Df-strings from D3 − D̄3 as cosmic strings, JHEP 04 (2006)

012 [hep-th/0510218];

M. Majumdar, A tutorial on links between cosmic string theory and superstring theory,

hep-th/0512062.

[2] A. Armoni and M. Shifman, On k-string tensions and domain walls in N = 1 gluodynamics,

Nucl. Phys. B 664 (2003) 233 [hep-th/0304127].

[3] J.H. Schwarz, An SL(2, Z) multiplet of type-IIB superstrings, Phys. Lett. B 360 (1995) 13

[hep-th/9508143].

[4] D. Bak, S.-J. Rey and H.-U. Yee, Exactly soluble dynamics of (p,q) string near macroscopic

fundamental strings, JHEP 12 (2004) 008 [hep-th/0411099].

[5] I.W. Taylor and M. Van Raamsdonk, Multiple D0-branes in weakly curved backgrounds, Nucl.

Phys. B 558 (1999) 63 [hep-th/9904095]; Multiple Dp-branes in weak background fields,

Nucl. Phys. B 573 (2000) 703 [hep-th/9910052];

P. Bordalo, L. Cornalba and R. Schiappa, Towards quantum dielectric branes: curvature

corrections in abelian beta function and nonabelian Born-Infeld action, Nucl. Phys. B 710

(2005) 189 [hep-th/0409017];

R. Schiappa, Matrix strings in weakly curved background fields, Nucl. Phys. B 608 (2001) 3

[hep-th/0005145];

J.K. Barrett and P. Bowcock, Using D-strings to describe monopole scattering,

hep-th/0402163; Using D-strings to describe monopole scattering: numerical calculations,

hep-th/0512211;

D. Brecher, B. Janssen and Y. Lozano, Dielectric fundamental strings in matrix string theory,

Nucl. Phys. B 634 (2002) 23 [hep-th/0112180].

[6] R. Minasian and D. Tsimpis, On the geometry of non-trivially embedded branes, Nucl. Phys.

B 572 (2000) 499 [hep-th/9911042];

I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades

and χSB-resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191].

[7] C.P. Herzog, I.R. Klebanov and P. Ouyang, Remarks on the warped deformed conifold,

hep-th/0108101;

K. Ohta and T. Yokono, Deformation of conifold and intersecting branes, JHEP 02 (2000)

023 [hep-th/9912266].

[8] M.R. Douglas and S.H. Shenker, Dynamics of SU(N) supersymmetric gauge theory, Nucl.

Phys. B 447 (1995) 271 [hep-th/9503163];

A. Hanany, M.J. Strassler and A. Zaffaroni, Confinement and strings in mQCD, Nucl. Phys.

B 513 (1998) 87 [hep-th/9707244];

C.G. Callan Jr., A. Guijosa, K.G. Savvidy and O. Tafjord, Baryons and flux tubes in

confining gauge theories from brane actions, Nucl. Phys. B 555 (1999) 183

[hep-th/9902197];

J.D. Edelstein and R. Portugues, Gauge/string duality in confining theories, Fortschr. Phys.

54 (2006) 525 [hep-th/0602021].

– 14 –

http://jhep.sissa.it/stdsearch?paper=11%282005%29023
http://jhep.sissa.it/stdsearch?paper=11%282005%29023
http://arxiv.org/abs/hep-th/0505110
http://jhep.sissa.it/stdsearch?paper=06%282004%29013
http://arxiv.org/abs/hep-th/0312067
http://jhep.sissa.it/stdsearch?paper=04%282006%29012
http://jhep.sissa.it/stdsearch?paper=04%282006%29012
http://arxiv.org/abs/hep-th/0510218
http://arxiv.org/abs/hep-th/0512062
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB664%2C233
http://arxiv.org/abs/hep-th/0304127
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB360%2C13
http://arxiv.org/abs/hep-th/9508143
http://jhep.sissa.it/stdsearch?paper=12%282004%29008
http://arxiv.org/abs/hep-th/0411099
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB558%2C63
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB558%2C63
http://arxiv.org/abs/hep-th/9904095
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB573%2C703
http://arxiv.org/abs/hep-th/9910052
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB710%2C189
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB710%2C189
http://arxiv.org/abs/hep-th/0409017
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB608%2C3
http://arxiv.org/abs/hep-th/0005145
http://arxiv.org/abs/hep-th/0402163
http://arxiv.org/abs/hep-th/0512211
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB634%2C23
http://arxiv.org/abs/hep-th/0112180
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB572%2C499
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB572%2C499
http://arxiv.org/abs/hep-th/9911042
http://jhep.sissa.it/stdsearch?paper=08%282000%29052
http://arxiv.org/abs/hep-th/0007191
http://arxiv.org/abs/hep-th/0108101
http://jhep.sissa.it/stdsearch?paper=02%282000%29023
http://jhep.sissa.it/stdsearch?paper=02%282000%29023
http://arxiv.org/abs/hep-th/9912266
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB447%2C271
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB447%2C271
http://arxiv.org/abs/hep-th/9503163
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB513%2C87
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB513%2C87
http://arxiv.org/abs/hep-th/9707244
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB555%2C183
http://arxiv.org/abs/hep-th/9902197
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=FPYKA%2C54%2C525
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=FPYKA%2C54%2C525
http://arxiv.org/abs/hep-th/0602021


J
H
E
P
1
2
(
2
0
0
6
)
0
5
7

[9] S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string

compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097];

S. Kachru, R. Kallosh, A. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev.

D 68 (2003) 046005 [hep-th/0301240].

[10] S.E. Shandera and S.H.H. Tye, Observing brane inflation, JCAP 05 (2006) 007

[hep-th/0601099];

J.M. Cline, Aspects of brane-antibrane inflation, Can. J. Phys. 84 (2006) 447–452

[hep-th/0510018];

H. Firouzjahi and S.H.H. Tye, Brane inflation and cosmic string tension in superstring

theory, JCAP 03 (2005) 009 [hep-th/0501099];

N. Barnaby, C.P. Burgess and J.M. Cline, Warped reheating in brane-antibrane inflation,

JCAP 04 (2005) 007 [hep-th/0412040];

L. Pogosian, S.H.H. Tye, I. Wasserman and M. Wyman, Observational constraints on cosmic

string production during brane inflation, Phys. Rev. D 68 (2003) 023506 [hep-th/0304188];

S. Sarangi and S.H.H. Tye, Cosmic string production towards the end of brane inflation,

Phys. Lett. B 536 (2002) 185 [hep-th/0204074];

N.T. Jones, H. Stoica and S.H.H. Tye, Brane interaction as the origin of inflation, JHEP 07

(2002) 051 [hep-th/0203163];

S.H.S. Alexander, Inflation from D − D̄ brane annihilation, Phys. Rev. D 65 (2002) 023507

[hep-th/0105032];

G.R. Dvali and S.H.H. Tye, Brane inflation, Phys. Lett. B 450 (1999) 72 [hep-ph/9812483].

[11] C.P. Herzog and I.R. Klebanov, On string tensions in supersymmetric gauge theory, Phys.

Lett. B 526 (2002) 388 [hep-th/011078];

S.A. Hartnoll and R. Portugues, Deforming baryons into confining strings, Phys. Rev. D 70

(2004) 066007 [hep-th/0405214];

S.S. Gubser, C.P. Herzog and I.R. Klebanov, Symmetry breaking and axionic strings in the

warped deformed conifold, JHEP 09 (2004) 036 [hep-th/0405282];

A. Armoni and M. Shifman, Remarks on stable and quasi-stable K-strings at large-N , Nucl.

Phys. B 671 (2003) 67 [hep-th/0307020];

J.J. Blanco-Pillado and A. Iglesias, Strings at the bottom of the deformed conifold, JHEP 08

(2005) 040 [hep-th/0504068].

[12] H. Firouzjahi, L. Leblond and S.H. Henry Tye, The (p,q) string tension in a warped deformed

conifold, JHEP 05 (2006) 047 [hep-th/0603161].

[13] E. Witten, Bound states of strings and p-branes, Nucl. Phys. B 460 (1996) 335

[hep-th/9510135].

[14] R.C. Myers, Dielectric-branes, JHEP 12 (1999) 022 [hep-th/9910053].

[15] A.A. Tseytlin, On non-abelian generalisation of the Born-Infeld action in string theory, Nucl.

Phys. B 501 (1997) 41 [hep-th/9701125].

[16] S. McNamara, C. Papageorgakis, S. Ramgoolam and B. Spence, Finite N effects on the

collapse of fuzzy spheres, JHEP 05 (2006) 060 [hep-th/0512145].

[17] M. Sakellariadou, Cosmic strings, hep-th/0602276.

[18] S. Thomas and J. Ward, Fuzzy sphere dynamics and non-abelian dbi in curved backgrounds,

JHEP 10 (2006) 039 [hep-th/0508085]; Electrified fuzzy spheres and funnels in curved

backgrounds, hep-th/0602071.

– 15 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD66%2C106006
http://arxiv.org/abs/hep-th/0105097
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD68%2C046005
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD68%2C046005
http://arxiv.org/abs/hep-th/0301240
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JCAPA%2C05%2C007
http://arxiv.org/abs/hep-th/0601099
http://arxiv.org/abs/hep-th/0510018
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JCAPA%2C03%2C009
http://arxiv.org/abs/hep-th/0501099
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JCAPA%2C04%2C007
http://arxiv.org/abs/hep-th/0412040
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD68%2C023506
http://arxiv.org/abs/hep-th/0304188
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB536%2C185
http://arxiv.org/abs/hep-th/0204074
http://jhep.sissa.it/stdsearch?paper=07%282002%29051
http://jhep.sissa.it/stdsearch?paper=07%282002%29051
http://arxiv.org/abs/hep-th/0203163
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD65%2C023507
http://arxiv.org/abs/hep-th/0105032
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB450%2C72
http://arxiv.org/abs/hep-ph/9812483
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB526%2C388
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB526%2C388
http://arxiv.org/abs/hep-th/011078
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD70%2C066007
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD70%2C066007
http://arxiv.org/abs/hep-th/0405214
http://jhep.sissa.it/stdsearch?paper=09%282004%29036
http://arxiv.org/abs/hep-th/0405282
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB671%2C67
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB671%2C67
http://arxiv.org/abs/hep-th/0307020
http://jhep.sissa.it/stdsearch?paper=08%282005%29040
http://jhep.sissa.it/stdsearch?paper=08%282005%29040
http://arxiv.org/abs/hep-th/0504068
http://jhep.sissa.it/stdsearch?paper=05%282006%29047
http://arxiv.org/abs/hep-th/0603161
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB460%2C335
http://arxiv.org/abs/hep-th/9510135
http://jhep.sissa.it/stdsearch?paper=12%281999%29022
http://arxiv.org/abs/hep-th/9910053
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB501%2C41
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB501%2C41
http://arxiv.org/abs/hep-th/9701125
http://jhep.sissa.it/stdsearch?paper=05%282006%29060
http://arxiv.org/abs/hep-th/0512145
http://arxiv.org/abs/hep-th/0602276
http://jhep.sissa.it/stdsearch?paper=10%282006%29039
http://arxiv.org/abs/hep-th/0508085
http://arxiv.org/abs/hep-th/0602071


J
H
E
P
1
2
(
2
0
0
6
)
0
5
7

[19] O. DeWolfe, S. Kachru and H. Verlinde, The giant inflaton, JHEP 05 (2004) 017

[hep-th/0403123];

O. DeWolfe, S. Kachru and H.L. Verlinde, The giant inflaton, JHEP 05 (2004) 017

[hep-th/0403123].

[20] C. Bachas, M.R. Douglas and C. Schweigert, Flux stabilization of D-branes, JHEP 05 (2000)

048 [hep-th/0003037].

[21] N.R. Constable, R.C. Myers and O. Tafjord, The noncommutative bion core, Phys. Rev. D

61 (2000) 106009 [hep-th/9911136];

N.R. Constable, R.C. Myers and O. Tafjord, Non-abelian brane intersections, JHEP 06

(2001) 023 [hep-th/0102080];

N.R. Constable and N.D. Lambert, Calibrations, monopoles and fuzzy funnels, Phys. Rev. D

66 (2002) 065016 [hep-th/0206243];

P. Cook, R. de Mello Koch and J. Murugan, Non-abelian bionic brane intersections, Phys.

Rev. D 68 (2003) 126007 [hep-th/0306250];

R. Bhattacharyya and R. de Mello Koch, Fluctuating fuzzy funnels, JHEP 10 (2005) 036

[hep-th/0508131];

R. Bhattacharyya and J. Douari, Brane intersections in the presence of a worldvolume

electric field, JHEP 12 (2005) 012 [hep-th/0509023].

[22] N. Drukker and B. Fiol, All-genus calculation of Wilson loops using D-branes, JHEP 02

(2005) 010 [hep-th/0501109].

[23] S.A. Hartnoll and S.P. Kumar, Multiply wound Polyakov loops at strong coupling,

hep-th/0603190;

S. Yamaguchi, Wilson loops of anti-symmetric representation and D5-branes, JHEP 05

(2006) 037 [hep-th/0603208];

D. Rodriguez-Gomez, Computing Wilson lines with dielectric branes, Nucl. Phys. B 752

(2006) 316 [hep-th/0604031].

– 16 –

http://jhep.sissa.it/stdsearch?paper=05%282004%29017
http://arxiv.org/abs/hep-th/0403123
http://jhep.sissa.it/stdsearch?paper=05%282004%29017
http://arxiv.org/abs/hep-th/0403123
http://jhep.sissa.it/stdsearch?paper=05%282000%29048
http://jhep.sissa.it/stdsearch?paper=05%282000%29048
http://arxiv.org/abs/hep-th/0003037
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD61%2C106009
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD61%2C106009
http://arxiv.org/abs/hep-th/9911136
http://jhep.sissa.it/stdsearch?paper=06%282001%29023
http://jhep.sissa.it/stdsearch?paper=06%282001%29023
http://arxiv.org/abs/hep-th/0102080
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD66%2C065016
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD66%2C065016
http://arxiv.org/abs/hep-th/0206243
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD68%2C126007
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD68%2C126007
http://arxiv.org/abs/hep-th/0306250
http://jhep.sissa.it/stdsearch?paper=10%282005%29036
http://arxiv.org/abs/hep-th/0508131
http://jhep.sissa.it/stdsearch?paper=12%282005%29012
http://arxiv.org/abs/hep-th/0509023
http://jhep.sissa.it/stdsearch?paper=02%282005%29010
http://jhep.sissa.it/stdsearch?paper=02%282005%29010
http://arxiv.org/abs/hep-th/0501109
http://arxiv.org/abs/hep-th/0603190
http://jhep.sissa.it/stdsearch?paper=05%282006%29037
http://jhep.sissa.it/stdsearch?paper=05%282006%29037
http://arxiv.org/abs/hep-th/0603208
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB752%2C316
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB752%2C316
http://arxiv.org/abs/hep-th/0604031

